
HC49U 4.9152 MHz crystals measurement by circle fit

First, some constants

Marked frequency f0 4.9152 10
6

⋅:=

Scan file name template sfnmt "HC49U_DRT_4M9152_":=

Reference crystal data file name rxdfn "HC49U_DRT_4M9152_fine.csv":=

Min and max crystal number n_min 0:= n_max 17:=

Min and max scan number m_min 0:= m_max 2:=

Reflection test setup Z0 z0r 50:=

Transmission tes t setup Z0 z0t 50:=

Then some functions to start with scans

Num to two-digit string

num2str2d x() if strlen num2str x()() 2< concat "0" num2str x(), (), num2str x(), ():= num2str2d 7() "07"=

Combine file name of scsn type, crystal number and scan number

comb_fn type n, m, () concat sfnmt num2str2d n(), "_", type, "_", num2str2d m(), ".csv", ():=

comb_fn "avg" 11, 0, () "HC49U_DRT_4M9152_11_avg_00.csv"=

Read average (full, both series and parallel resonanses), series only and parallel only resonance

scan file of reflection and transmission mode number m of crystal number n

Read a particular CSV scan by name rd_ccv_nm name() READCSV name 3, ():=

Read a CSV scan by type, n, m rd_scan type n, m, () READCSV comb_fn type n, m, () 3, ():=

Rho to Z rh2z rho() z0r
1 rho+

1 rho−
⋅:=

Freq & Rho to Freq & Z (reflection) frh2fz rcsv() augment rcsv
0〈 〉

rh2z rcsv
1〈 〉

j rcsv
2〈 〉

⋅+(), ():=

Freq & Z from average reflection scan rd_fz_ar n m, () frh2fz rd_scan "avg" n, m, ()():=

Freq & Z from series reflection scan rd_fz_sr n m, () frh2fz rd_scan "ser" n, m, ()():=

Freq & Z from parallel reflection scan rd_fz_pr n m, () frh2fz rd_scan "par" n, m, ()():=

Read average reflection CSV scan rd_ar n m, () rd_scan "avg" n, m, ():=

Read series reflection CSV scan rd_sr n m, () rd_scan "ser" n, m, ():=

Read parallel reflection CSV scan rd_pr n m, () rd_scan "par" n, m, ():=

Uncalibrated K to Z unc_k2z k() 2 z0t⋅
1 k−

k
⋅:=

Uncalibrated Freq & K to Freq & Z (transmission)

unc_fk2fz rcsv() augment rcsv
0〈 〉

unc_k2z rcsv
1〈 〉

j rcsv
2〈 〉

⋅+(), ():=

Uncalibrated Freq & Z from series transmission scan

unc_rd_fz_st n m, () unc_fk2fz rd_scan "res" n, m, ()():=

Calibrate transmission factor and offset

Since my VNA was calibrated only for k=1 in transmission mode, tune it against reflection data now

Take 0-th series resonance scans (transmission and reflection) of 17-th crystall for calculation:

Reflection scan (golden standard) fzsr rd_fz_sr 17 0, ():=

Uncalibrated transmission scan fzst unc_rd_fz_st 17 0, ():=

Uncalibrated transmission Z data slightly differs (R+jX plot):

4.9132 10
6

× 4.9134 10
6

× 4.9136 10
6

× 4.9138 10
6

× 4.914 10
6

×

200−

100−

0

100

200

300

400

Re fzsr
1〈 〉()

Im fzsr
1〈 〉()

Re fzst
1〈 〉()

Im fzst
1〈 〉()

fzsr
0〈 〉

fzsr
0〈 〉

, fzst
0〈 〉

, fzst
0〈 〉

,

For calibration we use linear fit in two end points

First point index na 0:=

Second point index nb rows fzsr() 1−:= nb 120=

z0t factor kzt fzsr
1〈 〉()

nb
fzsr

1〈 〉()
na

−



 fzst

1〈 〉()
nb

fzst
1〈 〉()

na
−



÷:=

z0t offset bzt fzsr
1〈 〉()

nb
kzt fzst

1〈 〉()
nb

⋅−:=

The result kzt 0.938 0.016i+= bzt 0.694 5.083i+=

Now we can continue with data access functions:

Calibrated K to Z k2z k() 2 z0t⋅
1 k−

k
⋅ kzt⋅ bzt+:=

Freq & K to Freq & Z (transmission) fk2fz rcsv() augment rcsv
0〈 〉

k2z rcsv
1〈 〉

j rcsv
2〈 〉

⋅+(), ():=

Freq & Z from average transm. scan rd_fz_at n m, () fk2fz rd_scan "gva" n, m, ()():=

Freq & Z from series transm. scan rd_fz_st n m, () fk2fz rd_scan "res" n, m, ()():=

Freq & Z from parallel transm. scan rd_fz_pt n m, () fk2fz rd_scan "rap" n, m, ()():=

Read average transmission CSV scan rd_at n m, () rd_scan "gva" n, m, ():=

Read series transmission CSV scan rd_st n m, () rd_scan "res" n, m, ():=

Read parallel transmission CSV scan rd_pt n m, () rd_scan "rap" n, m, ():=

Repeat data comparison to check the functions:

Calibrated transmission scan fzst rd_fz_st 17 0, ():=

Calibrated transmission Z data matching is good enough

4.9132 10
6

× 4.9134 10
6

× 4.9136 10
6

× 4.9138 10
6

× 4.914 10
6

×
200−

100−

0

100

200

300

Re fzsr
1〈 〉()

Im fzsr
1〈 〉()

Re fzst
1〈 〉()

Im fzst
1〈 〉()

fzsr
0〈 〉

fzsr
0〈 〉

, fzst
0〈 〉

, fzst
0〈 〉

,

More functions for scan data processing

Circle fit, as Randy Bullock prescribes

cir_fit xv yv, () n rows xv()←

x_m
1

n
0

last xv()

i

xv
i∑

=

⋅←

y_m
1

n
0

last yv()

i

yv
i∑

=

⋅←

u xv x_m−←

v yv y_m−←

s_uu

0

last u()

i

u
i
u
i

⋅()∑
=

←

s_uv

0

last u()

i

u
i
v
i

⋅()∑
=

←

s_vv

0

last v()

i

v
i
v
i

⋅()∑
=

←

s_uuu

0

last u()

i

u
i
u
i

⋅ u
i

⋅()∑
=

←

s_uuv

0

last u()

i

u
i
u
i

⋅ v
i

⋅()∑
=

←

s_uvv

0

last u()

i

u
i
v
i

⋅ v
i

⋅()∑
=

←

s_vvv

0

last u()

i

v
i
v
i

⋅ v
i

⋅()∑
=

←

mx
s_uu

s_uv

s_uv

s_vv









←

mv
0.5 s_uuu s_uvv+()⋅

0.5 s_vvv s_uuv+()⋅









←

uv lsolve mx mv, ()←

xc uv
0

x_m+←

yc uv
1

y_m+←

α uv
0()2 uv

1()2+
s_uu s_vv+

()
+←

:=

0() 1()
rows u()

r α←

xc

yc

r











Test circle fit on Randy's example cir_fit

0

0.5

1

1.5

2

2.5

3





















0

0.25

1

2.25

4

6.25

9





















,





















11.839−

8.446

14.686











=

Some functions for geting index of the first element in vector beyond n-th for a given condition

First inside the range fst_inr v n, min, max, () i n←

continue v
i

min<if

continue v
i

max>if

break

i n last v()..()∈for

i

:=

First outside the range fst_otr v n, min, max, () i n←

break v
i

min<if

break v
i

max>if

i n last v()..()∈for

i

:=

Get the range start and stop get_rng v n, min, max, () i fst_inr v n, min, max, ()←

j fst_otr v i, min, max, ()←

i

j 1−









:=

Have a look at series resonance scan of one crystall

Crystall index, scan index xqn 17:= scn 0:=

Read reflection scan fzsr rd_fz_sr xqn scn, ():=

Frequency vector f_v fzsr
0〈 〉

:= (fv name is used by Mathcad function)

Impedance vector zv fzsr
1〈 〉

:=

Classic Z(f) view in mod/arg form:

4.9132 10
6

× 4.9134 10
6

× 4.9136 10
6

× 4.9138 10
6

× 4.914 10
6

×
0

100

200

300

100−

50−

0

50

100

zv()
→ arg zv()

π
180⋅

f_v f_v,

Admittance vector yv
1

zv
:=

For circle fitting split the admittance:

Conductance gv Re yv():=

Susceptance bv Im yv():=

Due to duality, G+jB view of series resonance is similar to R+jX plot of a parallel one

4.9132 10
6

× 4.9134 10
6

× 4.9136 10
6

× 4.9138 10
6

× 4.914 10
6

×
0.05−

0

0.05

0.1

gv

bv

f_v f_v,

But what we are interested in is its B/G plot:

0 0.02 0.04 0.06 0.08
0.04−

0.02−

0

0.02

0.04

bv

gv

And now it's time for circle fitting:

g0

b0

gr











cir_fit gv bv, ():=

(g0,b0) - centre, gr - radius g0 0.038= b0 4.614− 10
5−

×= gr 0.038=

Series resistance based on the centre Rs_c 0.5 g0
1−

⋅:= Rs_c 12.988=

Based on the radius, good match Rs_r 0.5 gr
1−

⋅:= Rs_r 12.999=

To compare against your Rm value for this crystal the CSV file with measured parameters was

manually edited: commas at the end of each line confused Mathcad. Good matching IMHO:

msd_dat READCSV concat rxdfn ".txt", ()
2

2 n_max+









,








:= msd_dat
xqn 5,

12.8=

It seems possible to calculate RMS of radius deviation for all points against the fitted circle, it can

be used as tolerance estimation for the resulting Rm parameter. Unfortunately b0 is too far from

expected C0 susceptance:

C0 calculated on b0 c0a
b0

2 π⋅ f0⋅
:= c0a 1.494− 10

12−
×=

The next stage of curve fitting is much simpler - it's just a line fit into tan(phase) near resonance

Tangent of admittance phase tv tan arg yv()():= (tan(arg(zv)) has only flipped sign)

4.9132 10
6

× 4.9134 10
6

× 4.9136 10
6

× 4.9138 10
6

× 4.914 10
6

×
0

0.02

0.04

0.06

0.08

20−

10−

0

10

20

yv
→

tv

f_v

What I saw on my crystals was ideal line from some -15 to +15 of tangent value

Select subvector to be used for fitting
nx1

nx2









get_rng tv 0, 10−, 10, ():=

Start index nx1 12= f_v
nx1

4.91336 10
6

×=

Stop index nx2 81= f_v
nx2

4.913705 10
6

×= 5Hz step

Take subvector of frequency values lfv submatrix f_v nx1, nx2, 0, 0, ():=

And tangent values ltv submatrix tv nx1, nx2, 0, 0, ():=

Fit the line; Mathcad complains on

some non-reality in lfv (!?), so Re

a0

a1









line Re lfv() ltv, ():=

Line slope gives Q Q 0.5 a1⋅ f0⋅:= Q 1.421 10
5

×=

Zero phase frequency zpf
a0

a1
−:= zpf 4.913534 10

6
×=

Motion inductance Lm
Q Rs_r⋅

2 π⋅ f0⋅
:= Lm 0.059821=

Compare to your results, Q msd_dat
xqn 8,

1.451 10
5

×=

Zero phase frequency msd_dat
xqn 1,

4.913537 10
6

×=

Motion inductance msd_dat
xqn 6,

0.060144=

After calculating C0 using a parallel resonance frequency (high accuracy isn't needed there) it is

possible to take it into account for phase in series RLC branch and calculate the true series

resonance frequency.

The circle fitting technique is described in the 4,782,281 US patent (test system is claimed,

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/src

hnum.html&r=1&f=G&l=50&d=PALL&s1=4782281.PN.), however it seems completely legal to use

it. The best description of the circle fitting algorithm is probably by Randy Bullock,

https://dtcenter.org/met/users/docs/write_ups/circle_fit.pdf

