HC49U 4.9152 MHz crystals measurement by circle fit

First, some constants

Marked frequency
Scan file name template
Reference crystal data file name
Min and max crystal number
Min and max scan number
Reflection test setup ZO
Transmission test setup Z0

$$
\begin{aligned}
& \mathrm{f} 0:=4.9152 \cdot 10^{6} \\
& \mathrm{sfnmt}:=\text { "HC49U_DRT_4M9152_" } \\
& \text { rxdfn }:=\text { "HC49U_DRT_4M9152_fine.csv" } \\
& \text { n_min }:=0 \quad \text { n_max }:=17 \\
& \text { m_min }:=0 \quad \text { m_max }:=2 \\
& \text { z0r }:=50 \\
& \text { z0t }:=50
\end{aligned}
$$

Then some functions to start with scans

Num to two-digit string

$$
\text { num } 2 \operatorname{str} 2 \mathrm{~d}(\mathrm{x}):=\operatorname{if}(\operatorname{strlen}(\operatorname{num} 2 \operatorname{str}(\mathrm{x}))<2, \text { concat }(" 0 ", \operatorname{num} 2 \operatorname{str}(\mathrm{x})), \text { num } 2 \operatorname{str}(\mathrm{x})) \quad \text { num } 2 \operatorname{str} 2 \mathrm{~d}(7)=" 07 "
$$

Combine file name of scsn type, crystal number and scan number

$$
\begin{aligned}
& \text { comb_fn(type, } \mathrm{n}, \mathrm{~m}):=\text { concat(sfnmt, num2str2d(n), "_" , type, "_" , num2str2d(m), ".csv") } \\
& \text { comb_fn("avg" }, 11,0)=\text { "HC49U_DRT_4M9152_11_avg_00.csv" }
\end{aligned}
$$

Read average (full, both series and parallel resonanses), series only and parallel only resonance scan file of reflection and transmission mode number m of crystal number n

Read a particular CSV scan by name rd_ccv_nm(name) := READCSV(name, 3)
Read a CSV scan by type, n, $m \quad$ rd_scan(type, $n, m):=\operatorname{READCSV}($ comb_fn(type, $n, m), 3)$
Rho to Z
$\operatorname{rh} 2 \mathrm{z}($ rho $):=\mathrm{z} 0 \mathrm{r} \cdot \frac{1+\mathrm{rho}}{1-\mathrm{rho}}$
Freq \& Rho to Freq \& Z (reflection)
Freq $\& Z$ from average reflection scan
$\operatorname{frh} 2 \operatorname{fz}(\operatorname{rcsv}):=\operatorname{augment}\left(\operatorname{rcsv}^{\langle 0\rangle}, \operatorname{rh} 2 z\left(\operatorname{rcsv}^{\langle 1\rangle}+\mathrm{j} \cdot \operatorname{rcsv}{ }^{\langle 2\rangle}\right)\right)$

Freq \& Z from series reflection scan
rd_fz_ar(n, m) := frh2fz(rd_scan("avg" , $\mathrm{n}, \mathrm{m})$)
rd_fz_sr(n,m) := frh2fz(rd_scan("ser" , n, m))
Freq \& Z from parallel reflection scan
Read average reflection CSV scan
Read series reflection CSV scan
rd_fz_pr(n,m) := frh2fz(rd_scan("par" , n, m))

Read parall reflection CSV scan
Read parallel reflection CSV scan
Uncalibrated K to Z

$$
\text { rd_ar(n,m) := rd_scan("avg" }, \mathrm{n}, \mathrm{~m})
$$

rd_sr(n,m) := rd_scan("ser" , n, m)
rd_pr(n, m) := rd_scan("par" , n, m)
unc_k2z(k) $:=2 \cdot \mathrm{z} 0 \mathrm{t} \cdot \frac{1-\mathrm{k}}{\mathrm{k}}$
Uncalibrated Freq \& K to Freq \& Z (transmission)
unc_fk2fz(rcsv) $:=\operatorname{augment}\left(\operatorname{rcsv}^{\langle 0}{ }^{\rangle}\right.$, unc_k2z $\left.\left.\left(\operatorname{rcsv}^{\langle 1}{ }^{\langle }\right\rangle+\mathrm{j} \cdot \mathrm{rcsv}{ }^{\langle 2\rangle}\right)\right)$
Uncalibrated Freq \& Z from series transmission scan
unc_rd_fz_st(n,m) := unc_fk2fz(rd_scan("res" , n, m))

Calibrate transmission factor and offset

Since my VNA was calibrated only for $\mathrm{k}=1$ in transmission mode, tune it against reflection data now
Take 0-th series resonance scans (transmission and reflection) of 17-th crystall for calculation:
Reflection scan (golden standard) fzsr := rd_fz_sr(17,0)
Uncalibrated transmission scan fzst := unc_rd_fz_st(17,0)
Uncalibrated transmission Z data slightly differs $(R+j X$ plot $)$:

For calibration we use linear fit in two end points
First point index na:=0
Second point index

$$
\mathrm{nb}:=\operatorname{rows}(\mathrm{fzsr})-1 \quad \mathrm{nb}=120
$$

zOt factor

$$
\left.\left.\mathrm{kzt}:=\left[\left(\mathrm{fzsr}^{\langle 1\rangle}\right)_{\mathrm{nb}}-\left(\mathrm{fzsr}^{\langle 1}\right\rangle\right)_{\mathrm{na}}\right] \div\left[\left(\mathrm{fzst}^{\langle 1}\right\rangle\right)_{\mathrm{nb}}-\left(\mathrm{fzst}^{\langle 1\rangle}\right)_{\mathrm{na}}\right]
$$

z0t offset \quad bzt $:=\left(\mathrm{fzsr}^{\langle 1\rangle}\right)_{\mathrm{nb}}-\mathrm{kzt} \cdot\left(\mathrm{fzst}^{\langle 1\rangle}\right)_{\mathrm{nb}}$
The result $\quad \mathrm{kzt}=0.938+0.016 \mathrm{i} \quad \mathrm{bzt}=0.694+5.083 \mathrm{i}$
Now we can continue with data access functions:

Calibrated K to Z

Freq \& K to Freq \& Z (transmission)
Freq \& Z from average transm. scan
Freq \& Z from series transm. scan
Freq \& Z from parallel transm. scan
Read average transmission CSV scan
$\mathrm{k} 2 \mathrm{z}(\mathrm{k}):=2 \cdot \mathrm{z} 0 \mathrm{t} \cdot \frac{1-\mathrm{k}}{\mathrm{k}} \cdot \mathrm{kzt}+\mathrm{bzt}$
$\mathrm{fk} 2 \mathrm{fz}(\mathrm{rcsv}):=\operatorname{augment}\left(\operatorname{rcsv}^{\langle 0}{ }^{\rangle}, \mathrm{k} 2 \mathrm{z}\left(\mathrm{rcsv}^{\left\langle{ }^{\prime}\right\rangle}+\mathrm{j} \cdot \mathrm{rcsv}{ }^{\langle 2}\right)\right)$
rd_fz_at(n, m) := fk2fz(rd_scan("gva", n, m))
rd_fz_st(n, m) := fk2fz(rd_scan("res" , n, m))
rd_fz_pt(n,m) := fk2fz(rd_scan("rap", n, m))
rd_at $(\mathrm{n}, \mathrm{m}):=$ rd_scan("gva" $, \mathrm{n}, \mathrm{m})$

Read series transmission CSV scan rd_st(n,m) := rd_scan("res" , $n, m)$
Read parallel transmission CSV scan rd_pt(n,m) := rd_scan("rap" , n, m)
Repeat data comparison to check the functions:
Calibrated transmission scan fzst := rd_fz_st(17,0)
Calibrated transmission Z data matching is good enough

More functions for scan data processing
Circle fit, as Randy Bullock prescribes

$$
\begin{aligned}
& \operatorname{cir}_{-} \operatorname{fit}(\mathrm{xv}, \mathrm{yv}):=\left\lvert\, \begin{array}{l}
\mathrm{n} \leftarrow \operatorname{rows}(\mathrm{xv}) \\
\mathrm{x} \mathrm{_m} \leftarrow \frac{1}{\mathrm{n}} \cdot \sum_{\mathrm{i}=0}^{\operatorname{last}(\mathrm{xv})} \mathrm{xv}_{\mathrm{i}}
\end{array}\right. \\
& \begin{array}{l}
y_{-} m \leftarrow \frac{1}{n} \cdot \sum_{i=0}^{\text {last }(y v)} \mathrm{yv}_{\mathrm{i}} \\
\mathrm{u} \leftarrow \mathrm{xv}-\mathrm{x}_{-} \mathrm{m} \\
\mathrm{v} \leftarrow \mathrm{yv}-\mathrm{y}_{-} \mathrm{m} \\
\text { s_u }^{\mathrm{l}} \leftarrow \sum_{\mathrm{i}=0}^{\operatorname{last}(\mathrm{u})}\left(\mathrm{u}_{\mathrm{i}} \cdot \mathrm{u}_{\mathrm{i}}\right) \\
\text { s_uv } \leftarrow \sum_{\mathrm{i}=0}^{\operatorname{last}(\mathrm{u})}\left(\mathrm{u}_{\mathrm{i}} \cdot \mathrm{v}_{\mathrm{i}}\right)
\end{array} \\
& \mathrm{s}_{-} \mathrm{vv} \leftarrow \sum_{\mathrm{i}=0}^{\operatorname{last}(\mathrm{v})}\left(\mathrm{v}_{\mathrm{i}} \cdot \mathrm{v}_{\mathrm{i}}\right) \\
& \text { s_uuu } \leftarrow \sum_{i=0}^{\operatorname{last}(u)}\left(u_{i} \cdot u_{i} \cdot u_{i}\right) \\
& \text { s_uuv }_{-}^{\operatorname{last}(u)}\left(u_{i=0} \cdot u_{i} \cdot v_{i}\right) \\
& \text { s_uvv } \leftarrow \sum_{i=0}^{\text {last }(u)}\left(u_{i} \cdot v_{i} \cdot v_{i}\right) \\
& \mathrm{s} _\mathrm{vvv} \leftarrow \sum_{\mathrm{i}=0}^{\operatorname{last}(\mathrm{u})}\left(\mathrm{v}_{\mathrm{i}} \cdot \mathrm{v}_{\mathrm{i}} \cdot \mathrm{v}_{\mathrm{i}}\right) \\
& \mathrm{mx} \leftarrow\left(\begin{array}{cc}
\text { s_uu } & \text { s_uv } \\
\text { s_uv } & \text { s_vv }
\end{array}\right) \\
& \begin{array}{l}
\mathrm{mv} \leftarrow\left[\begin{array}{l}
0.5 \cdot\left(\mathrm{~s}_{-} u u u+\mathrm{s}_{-} u v v\right) \\
0.5 \cdot\left(\mathrm{~s}_{-} \mathrm{vvv}+\mathrm{s}_{-} u u v\right)
\end{array}\right] \\
\mathrm{uv} \leftarrow \text { lsolve }(\mathrm{mx}, \mathrm{mv}) \\
\mathrm{xc} \leftarrow \mathrm{uv}_{0}+\mathrm{x}_{-} \mathrm{m} \\
\mathrm{yc} \leftarrow \mathrm{uv}_{1}+\mathrm{y}_{-} \mathrm{m} \\
\alpha \leftarrow\left(\mathrm{uv}_{n}\right)^{2}+\left(\mathrm{uv}_{1}\right)^{2}+\frac{\mathrm{s}_{-} u u+\mathrm{s}_{-} \mathrm{vv}}{}
\end{array}
\end{aligned}
$$

Some functions for geting index of the first element in vector beyond n-th for a given condition

First inside the range

First outside the range

Get the range start and stop
fst_inr(v, n, min, max) := $\left\{\begin{array}{l}i \leftarrow n \\ \text { for } i \in(n . . \operatorname{last}(\mathrm{v})) \\ \left\lvert\, \begin{array}{ll}\text { continue } & \text { if } v_{i}<\min \\ \text { continue } & \text { if } v_{i}>\max \\ \text { break }\end{array}\right. \\ i\end{array}\right.$
fst_otr($\mathrm{v}, \mathrm{n}, \min , \max):=\left\{\begin{array}{l}\mathrm{i} \leftarrow \mathrm{n} \\ \text { for } \mathrm{i} \in(\mathrm{n} . . \operatorname{last}(\mathrm{v})) \\ \left\lvert\, \begin{array}{l}\text { break if } \mathrm{v}_{\mathrm{i}}<\min \\ \text { break if } \mathrm{v}_{\mathrm{i}}>\max \end{array}\right. \\ \mathrm{i}\end{array}\right.$

$$
\operatorname{get_ rng(v,n,\operatorname {min},\operatorname {max}):=} \begin{aligned}
& i \leftarrow \text { fst_inr}(v, n, \min , \max) \\
& j \leftarrow \text { fst_otr(}(\mathrm{v}, \mathrm{i}, \min , \max) \\
& \binom{i}{j-1}
\end{aligned}
$$

Have a look at series resonance scan of one crystall

Crystall index, scan index
Read reflection scan
Frequency vector
Impedance vector
Classic Z(f) view in mod/arg form:
xqn $:=17 \quad \operatorname{scn}:=0$
fzsr := rd_fz_sr(xqn, scn)
$\mathrm{f}_{-} \mathrm{v}:=\mathrm{fzsr}^{\left\langle{ }^{\langle }\right\rangle} \quad$ (fv name is used by Mathcad function)
$\mathrm{zv}:=\mathrm{fzsr}^{\left\langle{ }^{\langle }\right\rangle}$

Admittance vector

$$
\mathrm{yv}:=\frac{1}{\mathrm{zv}}
$$

For circle fitting split the admittance:

Conductance	gv $:=\operatorname{Re}(y v)$
Susceptance	bv $:=\operatorname{Im}(y v)$

Due to duality, $G+j B$ view of series resonance is similar to $R+j X$ plot of a parallel one

But what we are interested in is its B/G plot:

And now it's time for circle fitting: $\quad\left(\begin{array}{l}\mathrm{g} 0 \\ \mathrm{~b} 0 \\ \mathrm{gr}\end{array}\right):=\operatorname{cir} \mathrm{cit}_{-}(\mathrm{gv}, \mathrm{bv})$
$(\mathrm{g} 0, \mathrm{~b} 0)-$ centre, gr - radius $\quad \mathrm{g} 0=0.038 \quad \mathrm{~b} 0=-4.614 \times 10^{-5} \quad \mathrm{gr}=0.038$
Series resistance based on the centre Rs $\mathrm{c}:=0.5 \cdot \mathrm{~g} 0^{-1} \quad$ Rs_c $=12.988$
Based on the radius, good match

$$
\text { Rs_r }:=0.5 \cdot \mathrm{gr}^{-1}
$$

$$
\text { Rs_r = } 12.999
$$

To compare against your Rm value for this crystal the CSV file with measured parameters was manually edited: commas at the end of each line confused Mathcad. Good matching IMHO:
msd_dat $:=\operatorname{READCSV}[\operatorname{concat(rxdfn}$, ".txt" $\left.),\binom{2}{2+n_{-} \max }\right] \quad$ msd_dat $_{x q n, 5}=12.8$
It seems possible to calculate RMS of radius deviation for all points against the fitted circle, it can be used as tolerance estimation for the resulting Rm parameter. Unfortunately b0 is too far from expected C0 susceptance:

CO calculated on b0

$$
\mathrm{c} 0 \mathrm{a}:=\frac{\mathrm{b} 0}{2 \cdot \pi \cdot \mathrm{f} 0} \quad \mathrm{c} 0 \mathrm{a}=-1.494 \times 10^{-12}
$$

The next stage of curve fitting is much simpler - it's just a line fit into tan(phase) near resonance

$$
\text { tv }:=\tan (\arg (\mathrm{yv})) \quad(\tan (\arg (\mathrm{zv})) \text { has only flipped sign })
$$

What I saw on my crystals was ideal line from some -15 to +15 of tangent value
Select subvector to be used for fitting $\binom{\mathrm{n} x 1}{\mathrm{n} x 2}:=$ get_rng(tv, $\left.0,-10,10\right)$
Start index
Stop index
Take subvector of frequency values
And tangent values
$\mathrm{nx} 1=12 \quad \mathrm{f}_{-}{ }_{\mathrm{v} x 1}=4.91336 \times 10^{6}$
$\mathrm{nx} 2=81 \quad \mathrm{f}_{-} \mathrm{v}_{\mathrm{nx} 2}=4.913705 \times 10^{6} \quad 5 \mathrm{~Hz}$ step
lfv:= submatrix(f_v, nx1, nx2, 0,0)

Fit the line; Mathcad complains on some non-reality in Ifv (!?), so Re

Line slope gives Q
Zero phase frequency
ltv := submatrix(tv, nx1, nx2, 0, 0)
$\binom{\mathrm{a} 0}{\mathrm{a} 1}:=\operatorname{line}(\operatorname{Re}(\mathrm{lfv})$, ltv $)$

Motion inductance
$\mathrm{Q}:=0.5 \cdot|\mathrm{a} 1| \cdot \mathrm{f} 0 \quad \mathrm{Q}=1.421 \times 10^{5}$
zpf $:=-\frac{\mathrm{a} 0}{\mathrm{a} 1}$
zpf $=4.913534 \times 10^{6}$

Motion inductance
$\mathrm{Lm}:=\frac{\mathrm{Q} \cdot \mathrm{Rs} _\mathrm{r}}{2 \cdot \pi \cdot \mathrm{f} 0} \quad \mathrm{Lm}=0.059821$
Compare to your results, Q
Zero phase frequency
Motion inductance
msd_dat $_{\mathrm{xqn}, 8}=1.451 \times 10^{5}$
msd_dat $_{\text {xqn, } 1}=4.913537 \times 10^{6}$
msd_dat $_{\text {xqn }, 6}=0.060144$
After calculating C0 using a parallel resonance frequency (high accuracy isn't needed there) it is possible to take it into account for phase in series RLC branch and calculate the true series resonance frequency.
The circle fitting technique is described in the $4,782,281$ US patent (test system is claimed, http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1\&Sect2=HITOFF\&p=1\&u=/netahtmI/PTO/src
hnum.html\&r=1\&f=G\&l=50\&d=PALL\&s1=4782281.PN.), however it seems completely legal to use it. The best description of the circle fitting algorithm is probably by Randy Bullock, https://dtcenter.org/met/users/docs/write_ups/circle_fit.pdf

