
Robert J. Zavrel, Jr.,W7SX

ARRL Technical Advisor, P0 Box 91 Elmira, OR 97437; w7sx@arrI.net

Radiation Resistance, Feed Point
Impedance and Mythology

An understanding ofthese topics is vital to antenna experimenters,
yet many continue to misunderstand the definitions.

lt is not surprising that there remains
a great deal of confusion about antenna
radiation resistance generally, and its
relationship to fecd point impedance in
particular. Many authors state special
cases as being general rules. To top it off,
some actually state that there are multiple
definitions of radiation resistance. We arc
all free to invent whatever definitions we
wish about anything, but such made-up
definitions do not relate to the larger bocly
of knowledge and only serve to further
confuse an already confusing issue. Many
technical publications, including Amateur
Radio publications, state false definitions of
radiation resistance and erroneous values for
a variety of examples.

Of all the world-dass authors on the
subject, John Kraus provides the most
comprehensive discussions in a single text
that 1 have found.‘ He defines radiation
resistance from several different approaches
and applications. The cquations he published
for the definition take several different
forms in that they use diffei-ing variables.
Some readers have mistakenly interprcted
these multiple definitions as “different“
definitions. In this paper 1 will show that
the special case definition for radiation
resistance in vertical antennas (of special
interest to Amateur Radio operators) can
be derived from the general case definition.
Kraus does not provide these derivations,
hut the book is written as a teaching text.
As such, one can imagine such denvations
were assigned as graduate-level homework
assignments, and perhaps even Masters‘
thesis topics.

1Notes appear on page 35.

By working through this derivation we
can develop a deeper understanding of
this very difficult yet critically important
antenna parameter. Further, we can converge
on an unambiguous definition of radiation
resistance, using bodi a general equation and
a verbal description.

For purposes of simplicity this papcr
will focus upon linear in-line antennas, i.e.
single elements using a straight conductor
that has a diameter very small compared
to the wavelength. Multi-element arrays,
“bent“ arrays, planar structures and 3-d
antennas cm be very complex. NEC-based
modeling tools can approximate multi-
element antenna radiation resistance if used
carefully. E&M modeling tools become
indispensable for 2 and 3D structures.
The methods md defimtions in this paper,
however, can for a basic understanding,
necessary for caiculation of Rr in more
complicated antenna arrays.

Basic Concepts
“Radiation resistance‘ Rr, is the result

of the antenna coupling (losing power by
radiating) RF power into a medium, usually
“free space‘ Whenever power is dissipated
or “lost“ a resistance is involved. In any real
antenna there arc also resistive losses that
arc not part of the radiation resistance. The
power lost to ohmic resistance is dissipated
as heat, not as “radiation“ md is usually
designated as RL, or “loss re-sistance.“ lt is
relatively easy to visualize loss resistance
in antenna elements (wires or tubing) or the
ground. More difficult to conceptualize is
“losing“ power to space.

If “space“ “accepts“ RF energy by
providing a medium for that power, it must

have some type of impedance. An analogy
is the transmission line. When the line is
matched (SWR = 1:1) then the voltage md
current arc in pha.se md their ratio is equal
to die characteristic impedance of die line.
This is just Ohm‘s Law. Ifwe have aninfinite
transmission line, it will accept RF power
md appear as a pure resistance, yet Ihere is
no resistance (in a perfect line). We cm think
ofZ0 (die charactcristic impedancc of free
space) comparable to 4 (die charactcristic
impedancc of a transmission line).

In any calculation involving impedance,
Ohm‘s Law and the power law can be
applied. P = JE, and/or Z = E / 1. When
electromagnetic energy is radiated into
space there arc magnetic md electric field
components of die wave. These fields arc
measured in volts/meter md amperes/meter.
So, the characteristic impedance of free
space is: Z0 = V,,, / 1,,,. The “meter“ terms
cancel so we arc left with a simple Ohm‘s
Law calculation. This ratio of the electric
md magnetic field values is a result of die
permittivity,c and perrneability, p of free
space, thus 4 is also =

v
As an aside, die speed of light through

any medium is:

—

p6

Obviously the speed of light is
intrinsically related to R,. Furthermore, die
speed of light and die impedance of any
medium arc also based on diese two related
equations. In free space md die far field of
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the antenna, ihe ratio of values of the eleciric
and magnetic field are always constant.
Again, the ratio is defined by Z,3 = 377 Q,
often abbreviated as 120 it .

The caiculation of Z, of a transmission
line using air (free space) as its dielectric is
given by Equation 1.

Z (coax)=-i- !in
2irl0 d

where D is the inside diameter of
the coaxial shield and d is the outside
diameter of the internal conductor. Thus,
the characteristic impedance of an air core
transmission ilne can be calculated the same
way as the characteristic impedance of free
space, with the difference being that the
electric and magnetic fields are “trapped“
between the two conductors. Inside a
transmission line the waves arc “guided,“ in
free space they arc “radiated.“

Radiation Resistance Defined
We can approach deriving a general

equation for R by using several different
methods. In this paper 1 will attempt to
show that the valuc of R, given by different
equations by Kraus, in effect, reflect the same
definition.

Let‘s begin with a simple method to form
an intuitive understanding; the power law.
In principle, we can flnd any value of R by
Ohm‘s Law as above or by the power law:
Rr = Pl 1

R=°
4A

Eq11

is Ihe power gain, in this case 1, assuming no
loss. Thus, the higher the gain of an antenna,
the greater the antenna‘s aperature and the
smaller the antenna‘s solid angle defining the
3 dB beamwidth.

From an intuitive view, imagine that it
is “more difficult“ to radiate into a smaller

[Eq 31 portion of free space than the full sphere of
free space, so the smaller the solid angle (fl)
the higher the gain, and the lower the R,.

An example to illustrate this effect is
to compare a “perfect“ ground mounted
¼ Xvertical aiitenna over a perfect conductive
ground (Rr = 36 2) and a ½ ? dipole in free
space (R, = 73 )). The maximum broadside
gain of the vertical is 5.14 dBi and the gain
of the dipole is about 2.14 dBi, about 3 dB
difference, or a power gain difference ofexactly
2. The R, difference is also 2, indicating a linear
relationship between antenna power gain,
antenna aperature, and R,. Additionally, it is
easyto imagine that the vertical antenna is only
radiating into one hemi.sphere here, deflncd by
Ihe hemisphere above the ground plane, and
die dipole is radiating into both hemispheres
(no ground to divide free space), Thus the solid
angle, is also half for the vertical compared
10 the dipole.

sind about a pure reactance, however. That
should not imply that we despair and forget
about a proper definition for Xi., X1, or R,!

For non-isotropic antennas, we need a bit
of refinement. As a general definition, Kraus
detines R, as given by Equation 3.

R
S(O,ø)m2,:r2A

r j2

This is the general-form equation for
radiation resistance. Two of the three key
terms we have already mentioned: power
and current, so this is really just a special
expression of the power law (R = P / P, but
with some important subtieties. As in the
simple case given earlier, the power term is
in the numerator. For non-isotropic cases,
however, the term S(84),,. is a necessary
refinement of the simple isotropic solid
angle of 4it, a fleld power density (called
the Poynting vector) over the sphcrical
coordinates (like longitude and latitude).
In other words, the power term is now the
sum of all the power propagating through
a portion of the imaginary sphere instead
of the entire sphere we discussed earlier.
In this case, Kraus is using the point that is
the maximum power point on the sphere‘s
surface — more on this later. In the isotropic
case, as above, all points on the sphere have
equal power density, so Equation 3 simplifles
to the simpler power equalion.

Moving through the numerator, the
sphere has a radius of r, and then there‘s
a possibly confusing term, i Usually £1
designates “Ohms,“ but not in this case.
Here, designates a solid angle, which in
tum defines a portion of the sphere‘s surface
(like the Pacific Ocean defines a portion of
the surface of the spherical earth). Both ohms
and solid angles arc needed in this paper, so
I‘ll follow a convention ihat uses bold font
for die solid angle term. With solid angles, 4it
defines die entire sphere, 2it a hemisphere,
and so on. So, an isotropic antenna will
radiate with a pattern of 4it, equal power in
all directions. Then ) defines the portion of
the sphere that is the 3 dB beamwidth arca
surrounding die point of maximum power
propagating through die sphere, or
The RF current squared term, P, appears on
die antenna element at a current maximum.

So we see in this general equation that
R, is a function of three fundamental tcrms

total power radiated, antenna current, and
die beamwidth of die antenna pattern. Most
readers will recognize that beamwidth is also
a function of antenna gain, where an isotropic
antenna has an aperture (gathering area) of 2

/ 4it. Gain is proportional to aperture, so an
antenna with 3 dBi gain will have an aperture
of 22 / 4t, since 3 dB is a power difference
of 2. An isotropic antenna has a solid angle,
1, of 411, therefore, 411 Q = 4t! G, where G

Equating Kraus‘ Radiation
Resistance Equations

Of special importance for radio amateurs
is the value of R, for vertical antennas.
In a previous paper, 1 provided a detailed
explanation of R, for vertical antennas.3 For
vertical antennas Kraus gives die following
equations.

hZ Z
[Eq4j

Imagine an isotropic transmitting antenna
in free space. Surrounding the antenna of
interest is a large imaginary sphere. The
radius of the sphere is large compared to
the wavelength of Operation (in the far
fleld of die antenna). The sum of all power
propagating dirough this sphere is die same
as die total power radiated by die antenna.
The RF current at a maximum point along die
antenna lengdi represents die current value
we use in die power law equation. Thus if we
know die total power radiating away from
die antenna in free space and die current at
a maximum point along die antenna, we can
directly calculate the radiation resistance
using Equation 2.

Rr=P/P [Eq2]

This is die very simple and intuitive
general form equation for radiation resistance
for an isotropic antenna.

If die antenna is lossiess, then diese two
terms will exactly define R,. Since losses
(usually series losses) exist, however, the
current will be a bit higher for a given radiated
power dian Rc. The radiation resistance can
never be equal to die feed point impedance
because of losses (unless you use a super
conducting antenna). The same ding can be

Rearranging terms we get the radiation
resislance for a vertical antenna:

q5]

Where A, is the antenna aperture, measured
in m2 (directly proportional to gain)h, is die
antenna height measured in meters, where:

[Eq6]

where l. is die average current along die
vertical antenna element, l is die maximum
current along the antenna, and h0 is the
actual physical length of the vertical. The
irnpedance of free space, Z0, is mcasured
in ohms, and R, is die radiation resistance,
also measured in ohms. Here, the tcrms
containing linear dimensions cancel and we
arc again left widi ohms.

Any definition of radiation resistance
(defined by ohms) must yield only ohms,
unless you want to redefine oder terms as
weh to make your equation work! Vahid
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equations defining radiation resistance
simply substitute other terms that, in turn,
must be valid. Let‘s sec if the Kraus equation
for the general case (Equation 3) can be
shown to be the same as the particular case
for a vertical (Equation 5).

We can answer this question by
substituting terms for their equivalents. We
will assume an isotropic case for both, thus
Equation 3 becomes Equation 7.

R
=S(0,Ø)4

[Eq7]
r j2

where 4it = for an isotropic antenna and
Equalion 5 becomes Equation 8.

R Zolrhe [Eqil]
r= 22

Equation 11 is R, derived from the general
equation for an isotropic antenna. Now let‘s
derive R, from Kraus‘s special equation for
vertical antennas (Equation 5). Again for the
isotropic case, substituting ?.2 / 4it for A, we
have Equation 12.

or

R
4,rhZ0

422

R
Z0,rh

22

or

R
4niiZ0

4%2

R =

22

[Eq12]

[Eq13

Thus farlhavehintedatabasic relationship
between radiation resistance and feed point
impedance — at a current maximum along
an antenna. This is an important first step, but
we need some refinement.

If we measure the fced point impedance
(resistance and reactance) as purely reactive
(no real part of the impedance) then there is
no power loss md thus no radiation. Of course
there is alwavs some loss in real antennas or
circuits. If there is a resistive portion of the
feed point impedance then power is being
lost as either heat (conductor loss) and/or
radiation. The feed point impedance and
radiation resistance arc never equal because
there is always resistive loss (with the
unlikely exception of using a superconductor
antenna). In the case of an antenna, whcre the
usual desired effect is to minimize loss md
maximize power transfer to (or extraction
from) free space we cm express this often
published relationship as antenna efficiency

Eff= [Eq14]

Eff is the antenna efficiency, R, is the
radiation resistance and R1 is the ohmic re
sistancc resulting in power dissipatcd by heat.

where 2 / 4it is the aperture of an isotropic
antenna, or A. Thus we have assumed the
isotropic case for both equations.

If Equations 7 and 8 cnn be shown as
equal, then R, has the same definition for
the general case md the special ca.se for the
vertical antenna. Again, for the isotropic
case, represents the total power
radiated by the antenna. Kraus also shows
that the total radiated power cm be defined
as the value of the square of the radiated
magnetic field: H2 = S(O,4», where

[P 8] Equation 13 is identical to Equation 11
as long as the fl coincides with the value for
A, as explained above. If we change the gain
from isotropic, both equations simply change
value by identical coefficients as described

{Eq 8A1 earlier. (The isotropic case simplifies the
derivation considerably, however).

Thus Kraus presents only one definition
of R,. Furthermore, we can derive R, by
working from an integration of the radiated
output power together with maximum
antenna current md the gain of the antenna
(Equation 3), or we cnn derive R, from the
distribution of current on the antenna, the
maximum current on the antenna, md the
gain of the antenna (special case for the
vertical antenna, Equation 5). Thus we cnn
see that R, is a function of all these terms. lt
all depends on using the proper terms to set
up more convenient equations for specific
applications. Like other terms used in Physics,
R, is a well-defined term that cm be derived
using standard equations, including the most
fundamental equations of electromagnetic
science: Maxwell‘s Equations.

H=
J2rfIh

4irc

md where c is the speed of light. This is
simply another form of the power law, whcre
power is a function of the current squared,
and a magnetic field strength is directly
proportional to the current creating the field.

Therefore, radiated power is

4ir212h2
IJ2rZ

° l6ir22
or

H2
= Z0I2h

422

Radiation Resistance and Feed
Point Impedance

The impedance at an antenna‘s feed point
depends upon the frequency of operation,
physical characteristics of the antenna, the
current distribution, its relationships to
objects, the impedance of free space, md
the point on the antenna where die power
is applied. All these conditions result in a
ratio of voltage and current (the real part
of die feed point impedance) md die phase
relationship between voltage md current (die

Now we can multiply by 421 (Q) (for die
isotropic case) md divide byF0to derive die
following equations.

Mythology
Myth #1: Radiation resistance is a “part“

of die feed point imped.ance.
This is true only in specific cases md

is a major source of confusion as a general
definition. For example, if we center feed a
½ resonant dipole in free space, the feed
point impedance is about 73 Q of pure
resistance. The radiation resistarice is also
about 73 . The feed point impcdance will
probably be measurcd at a bit higher value
than 73 f2 because of ohmic losses (heat) in
die antenna. lf die ohmic losses arc 1 fl, dien
die fecd point impedance would be 74 2, md
by Equalion 14, die antenna efficiency would
be about 98.6%. In this special case, Mydi #1
is truc. In this special case, die transformation
of source impcdancc (feed point) to bad
impedance(radiation resistance) is 1:1.

If we feed die dipole off center, however,
let‘s say at ¼ of die clistance from one end
instead of half way, die feed point impedance
is 138 Q real but die radiation resistance is
still 73 md die ohmic resistance remains
very small. If Mydi #1 were Inic, then we
have 65 of unaccounted resistance. The
ohmic losses arc still only due to about 1 Q,
so subtracting 73 from 138 is meaningless.
The feed point impedance has simply been
“transformed“ by moving it off die point of
current maximum along die dipole. Since die
values of current md voltage change along
the length of an antenna, antenna elements
cm become impedance transformers for feed
points. In die case of a ½ dipole, however,

Z012h2
R

P4

422I
or

Z id2h2
R

°

2I

or

rcactive part of die feed point impedance).
Therefore, the same dependencies

[Eq 9] that determine die feed point impedance
also affect die radiation resistance hut die
calculations to derive the two terms use
different equations because they arc not

[F 10] identical. 1 will attempt to offer a non
1 madiematical description of die necessary

conditions for fecd point impedance to equal
radiation resistancc (assuming no loss).
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R, remains constant no matter where the feed
point is piaced along the antenna, but the feed
point impedance changes dramaticaily with
changing the fecd point location.

Myth #2: Radiation resistance is equal to
feed point impedance plus losses in a center
fed antenna.

Again, as above, this is true only in a
special case. Consider a center-fed folded ½
dipole. The feed point impedance is about
300 ‚ hut the radiation resistance remains
die same as a single-wire dipole, about 73 .
Assuming that a folded antenna has 4x the
radiation resistance of a single conductor
antenna is a common error. Antenna elements
(as weil as transmission lines) can also behave
as transformers as in the cases of folded
antennas, while terms defining radiation
resistance remain constant. This is also
another obvious case where Myth#l is false.
(As an aside, folded dipoles exhibit lower Q
than a single-wire counterpart, maldng them
more broad-banded).

The separation of the two conductors
in a folded dipole is assumed to be a very
small fraction of a wavelength. The currents
flowing on adjacent points of the two
conductors simply add when forming the
radiation wave. If the currents arc in phase
and equal (another assumplion of die folded
dipole), the effeetive current is doubled (as
far as radiation is concerned), but the feed
point is connccted to only one conductor.
This result is the feed point current is ½ the
total effective currant at that point, resulting
in a 4x increase in feed point impedance, but,
again, R, remains constant at 73 2.

Another example is a two-element
collinear antenna, which is actually a full
wavelength dipole fed in the center. The
radiation resistance increases to near 100 Z
but the feed point impedance is over 1000 Q.
Again, thera is no direct relationship between
feed point impedance and radiation resistance.

Myth #3: The feed point impedance of a
base-fed vertical is radiation resistance plus
i.he antenna losses.

This is only true for single conductor
verticals that are eleclrically ¼ X or shorter. A
perfcct ¼ ? vertical over a perfect ground will
have a radiation resistance of ahout 36 Q, die
same as the feed point impedance.

Now let‘s place a capacitance hat on die
X vertical, which also has an equivalent

elecirical length of ½ ?. Instead of die current
maximum appearing at die base, die current
maximum is now at die top of die vertical.
The radiation resistance remams die same at
36 ‚ but die feed point impedance is over
1000 . So much for using the base fed
vertical myth.

As die vertical is made longer dian ¼ ‚

die feed point impedance is no longer die
same as die radiation resistance. This is most
dramatically shown for a ½ (actual height)

vertical whose feed point impedance is over
1000 f2 of real impedance value, yet the
radiation resistance is about 100 2.

L.et‘s look at another example: a folded
1% vertical. In this case we have a two ‘/ )
wires closely spaced and shorted at die top.
One wire is fed against die ground, die other
is connected to ground, thus appearing to
be a folded dipole widi die ground acting as
counterpoise. The radiation resistance again
remains die same 36 ‚ hut die feed point
impedance is now 144 ft Again we see an
impedance transformation, but no effect on
radiation resistance.

Myth #4: The feed point impedance is
equal to die radiation resistance plus losses
only at a current maximum on die antenna.

This is getting closer to a correct
correlation, but the examples of both die
horizontal and vertical folded antennas prove
diis general statement to be untrue. We can
now define a set of practical conditions
(especially for most amateur work), however,
where the feed point impedance actually
equals die radiation resistance.

Relationship Between Radiation
Resistance and Feed Point Impedance: The
real portion of the feed point impedance
equals the radiation resistance plus losses
of die antenna only for single-conductor
antennas fed at a current maximum along
die antenna.

The feed point will coincide widi acurrent
maximum at die center of a balanced antenna
that is less dian or equal to an electrical ½ X
long. lt will also coincide with die center of
a horizontal antenna diat is an odd number
times ½ .

Forbase-fed vertical antennas, die feed point
will be at a current maximum when die dec
trical length of die vertical is less than or equal
to ¼ ? or odd muftiples of an elecirical ¼ .

For other situations, intuition easily
breaks down and an analytical tool
becomes invaluable. Current maximums
arc conveniently illustrated in many
antenna simulation software tools. For
example, EZNEC shows current values
along conductors in all of its simulations.
Therefore, if your feed point is located
at a current maximum, the real portion
of the feed point impedance will be the
simulated radiation resistance plus losses.
Any statement equating radiation resistance
plus losses and feed point impedance should
not appear as “general rule“ statements but
radier include a brief description of “why“
for same set of special cases.

Anodier complexity: In antennas longer
than ½ die current distribution (and dius
die radiation resistance) can be changed by
changing die feed point location. So, when
caiculating andlor measuring die location(s)
of current maximum(s) along an antenna
element, be careful diat key terms that define

R, arc often changed by changing the feed
point position.

In amateur applications, radiation
resistancc is most often important in vertical
antenna installations, especially when the
vertical is shorter than ¼ 2, and especially
critical in HF mobile installations. In diese
cases die ahove definition does indeed apply.
The common mistake, however, is to apply
die definition to a more general case, which
usually leads to mistakes. In almost every
amateur vertical antenna installation, loses
will be series ground losses. In mobile low
band anteimas, however, die conductor losses
of the antenna proper may also play a part as
die radiation resistance may be milliohrns.

For a much deeper understanding of die
terms used and derivations presented in diis
paper die reader is invited to read the three
references given. The Kraus text develops
die terms md formal proofs using advanced
madiematics, especially integral md vector
caiculus. In two earlier QEX articies, 1
attempted to simplify die complexity needed to
quantify antenna theory, in this case die Kraus
text.2‘3 This paper, in turn, focuses specificaliy
an a deeper treatment of radiation resistance
md die often-confused relationship between
radiation resistance md feed point impedance
deriving fundamental theory and derivations
from die three references.
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